Copied to
clipboard

G = C2×C23.2F5order 320 = 26·5

Direct product of C2 and C23.2F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.2F5, C24.3F5, C232(C5⋊C8), (C22×C10)⋊4C8, C102(C22⋊C8), (C23×C10).6C4, C23.63(C2×F5), C10.24(C22×C8), Dic5.116(C2×D4), (C2×Dic5).263D4, (C2×C10).25M4(2), C10.33(C2×M4(2)), C22.53(C22×F5), (C23×Dic5).12C2, (C22×Dic5).36C4, C22.53(C22⋊F5), Dic5.51(C22⋊C4), (C2×Dic5).359C23, C22.10(C22.F5), (C22×Dic5).279C22, C53(C2×C22⋊C8), C222(C2×C5⋊C8), (C2×C10)⋊8(C2×C8), (C22×C5⋊C8)⋊7C2, (C2×C5⋊C8)⋊8C22, C2.9(C22×C5⋊C8), C2.5(C2×C22⋊F5), C10.38(C2×C22⋊C4), C2.5(C2×C22.F5), (C2×C10).91(C22×C4), (C22×C10).73(C2×C4), (C2×C10).62(C22⋊C4), (C2×Dic5).195(C2×C4), SmallGroup(320,1135)

Series: Derived Chief Lower central Upper central

C1C10 — C2×C23.2F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — C2×C23.2F5
C5C10 — C2×C23.2F5
C1C23C24

Generators and relations for C2×C23.2F5
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e5=1, f4=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 602 in 202 conjugacy classes, 84 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C23, C23, C23, C10, C10, C10, C2×C8, C22×C4, C24, Dic5, Dic5, C2×C10, C2×C10, C2×C10, C22⋊C8, C22×C8, C23×C4, C5⋊C8, C2×Dic5, C2×Dic5, C2×Dic5, C22×C10, C22×C10, C22×C10, C2×C22⋊C8, C2×C5⋊C8, C2×C5⋊C8, C22×Dic5, C22×Dic5, C22×Dic5, C23×C10, C23.2F5, C22×C5⋊C8, C23×Dic5, C2×C23.2F5
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, F5, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C5⋊C8, C2×F5, C2×C22⋊C8, C2×C5⋊C8, C22.F5, C22⋊F5, C22×F5, C23.2F5, C22×C5⋊C8, C2×C22.F5, C2×C22⋊F5, C2×C23.2F5

Smallest permutation representation of C2×C23.2F5
On 160 points
Generators in S160
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 83)(10 84)(11 85)(12 86)(13 87)(14 88)(15 81)(16 82)(17 108)(18 109)(19 110)(20 111)(21 112)(22 105)(23 106)(24 107)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)(41 127)(42 128)(43 121)(44 122)(45 123)(46 124)(47 125)(48 126)(49 145)(50 146)(51 147)(52 148)(53 149)(54 150)(55 151)(56 152)(65 155)(66 156)(67 157)(68 158)(69 159)(70 160)(71 153)(72 154)(73 96)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(97 119)(98 120)(99 113)(100 114)(101 115)(102 116)(103 117)(104 118)(129 140)(130 141)(131 142)(132 143)(133 144)(134 137)(135 138)(136 139)
(1 48)(2 29)(3 42)(4 31)(5 44)(6 25)(7 46)(8 27)(9 151)(10 88)(11 145)(12 82)(13 147)(14 84)(15 149)(16 86)(17 92)(18 105)(19 94)(20 107)(21 96)(22 109)(23 90)(24 111)(26 128)(28 122)(30 124)(32 126)(33 135)(34 58)(35 129)(36 60)(37 131)(38 62)(39 133)(40 64)(41 123)(43 125)(45 127)(47 121)(49 85)(50 150)(51 87)(52 152)(53 81)(54 146)(55 83)(56 148)(57 142)(59 144)(61 138)(63 140)(65 97)(66 160)(67 99)(68 154)(69 101)(70 156)(71 103)(72 158)(73 112)(74 93)(75 106)(76 95)(77 108)(78 89)(79 110)(80 91)(98 116)(100 118)(102 120)(104 114)(113 157)(115 159)(117 153)(119 155)(130 137)(132 139)(134 141)(136 143)
(1 122)(2 123)(3 124)(4 125)(5 126)(6 127)(7 128)(8 121)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 49)(16 50)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)(33 142)(34 143)(35 144)(36 137)(37 138)(38 139)(39 140)(40 141)(57 135)(58 136)(59 129)(60 130)(61 131)(62 132)(63 133)(64 134)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 113)(72 114)(81 145)(82 146)(83 147)(84 148)(85 149)(86 150)(87 151)(88 152)(89 109)(90 110)(91 111)(92 112)(93 105)(94 106)(95 107)(96 108)(97 159)(98 160)(99 153)(100 154)(101 155)(102 156)(103 157)(104 158)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 159 63 55 75)(2 56 160 76 64)(3 77 49 57 153)(4 58 78 154 50)(5 155 59 51 79)(6 52 156 80 60)(7 73 53 61 157)(8 62 74 158 54)(9 23 126 101 129)(10 102 24 130 127)(11 131 103 128 17)(12 121 132 18 104)(13 19 122 97 133)(14 98 20 134 123)(15 135 99 124 21)(16 125 136 22 100)(25 152 70 91 36)(26 92 145 37 71)(27 38 93 72 146)(28 65 39 147 94)(29 148 66 95 40)(30 96 149 33 67)(31 34 89 68 150)(32 69 35 151 90)(41 84 116 107 141)(42 108 85 142 117)(43 143 109 118 86)(44 119 144 87 110)(45 88 120 111 137)(46 112 81 138 113)(47 139 105 114 82)(48 115 140 83 106)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,81)(16,82)(17,108)(18,109)(19,110)(20,111)(21,112)(22,105)(23,106)(24,107)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,127)(42,128)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,153)(72,154)(73,96)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(129,140)(130,141)(131,142)(132,143)(133,144)(134,137)(135,138)(136,139), (1,48)(2,29)(3,42)(4,31)(5,44)(6,25)(7,46)(8,27)(9,151)(10,88)(11,145)(12,82)(13,147)(14,84)(15,149)(16,86)(17,92)(18,105)(19,94)(20,107)(21,96)(22,109)(23,90)(24,111)(26,128)(28,122)(30,124)(32,126)(33,135)(34,58)(35,129)(36,60)(37,131)(38,62)(39,133)(40,64)(41,123)(43,125)(45,127)(47,121)(49,85)(50,150)(51,87)(52,152)(53,81)(54,146)(55,83)(56,148)(57,142)(59,144)(61,138)(63,140)(65,97)(66,160)(67,99)(68,154)(69,101)(70,156)(71,103)(72,158)(73,112)(74,93)(75,106)(76,95)(77,108)(78,89)(79,110)(80,91)(98,116)(100,118)(102,120)(104,114)(113,157)(115,159)(117,153)(119,155)(130,137)(132,139)(134,141)(136,143), (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,121)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,142)(34,143)(35,144)(36,137)(37,138)(38,139)(39,140)(40,141)(57,135)(58,136)(59,129)(60,130)(61,131)(62,132)(63,133)(64,134)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(81,145)(82,146)(83,147)(84,148)(85,149)(86,150)(87,151)(88,152)(89,109)(90,110)(91,111)(92,112)(93,105)(94,106)(95,107)(96,108)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,159,63,55,75)(2,56,160,76,64)(3,77,49,57,153)(4,58,78,154,50)(5,155,59,51,79)(6,52,156,80,60)(7,73,53,61,157)(8,62,74,158,54)(9,23,126,101,129)(10,102,24,130,127)(11,131,103,128,17)(12,121,132,18,104)(13,19,122,97,133)(14,98,20,134,123)(15,135,99,124,21)(16,125,136,22,100)(25,152,70,91,36)(26,92,145,37,71)(27,38,93,72,146)(28,65,39,147,94)(29,148,66,95,40)(30,96,149,33,67)(31,34,89,68,150)(32,69,35,151,90)(41,84,116,107,141)(42,108,85,142,117)(43,143,109,118,86)(44,119,144,87,110)(45,88,120,111,137)(46,112,81,138,113)(47,139,105,114,82)(48,115,140,83,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,83)(10,84)(11,85)(12,86)(13,87)(14,88)(15,81)(16,82)(17,108)(18,109)(19,110)(20,111)(21,112)(22,105)(23,106)(24,107)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)(41,127)(42,128)(43,121)(44,122)(45,123)(46,124)(47,125)(48,126)(49,145)(50,146)(51,147)(52,148)(53,149)(54,150)(55,151)(56,152)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,153)(72,154)(73,96)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(97,119)(98,120)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(129,140)(130,141)(131,142)(132,143)(133,144)(134,137)(135,138)(136,139), (1,48)(2,29)(3,42)(4,31)(5,44)(6,25)(7,46)(8,27)(9,151)(10,88)(11,145)(12,82)(13,147)(14,84)(15,149)(16,86)(17,92)(18,105)(19,94)(20,107)(21,96)(22,109)(23,90)(24,111)(26,128)(28,122)(30,124)(32,126)(33,135)(34,58)(35,129)(36,60)(37,131)(38,62)(39,133)(40,64)(41,123)(43,125)(45,127)(47,121)(49,85)(50,150)(51,87)(52,152)(53,81)(54,146)(55,83)(56,148)(57,142)(59,144)(61,138)(63,140)(65,97)(66,160)(67,99)(68,154)(69,101)(70,156)(71,103)(72,158)(73,112)(74,93)(75,106)(76,95)(77,108)(78,89)(79,110)(80,91)(98,116)(100,118)(102,120)(104,114)(113,157)(115,159)(117,153)(119,155)(130,137)(132,139)(134,141)(136,143), (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,121)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,49)(16,50)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,142)(34,143)(35,144)(36,137)(37,138)(38,139)(39,140)(40,141)(57,135)(58,136)(59,129)(60,130)(61,131)(62,132)(63,133)(64,134)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(81,145)(82,146)(83,147)(84,148)(85,149)(86,150)(87,151)(88,152)(89,109)(90,110)(91,111)(92,112)(93,105)(94,106)(95,107)(96,108)(97,159)(98,160)(99,153)(100,154)(101,155)(102,156)(103,157)(104,158), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,159,63,55,75)(2,56,160,76,64)(3,77,49,57,153)(4,58,78,154,50)(5,155,59,51,79)(6,52,156,80,60)(7,73,53,61,157)(8,62,74,158,54)(9,23,126,101,129)(10,102,24,130,127)(11,131,103,128,17)(12,121,132,18,104)(13,19,122,97,133)(14,98,20,134,123)(15,135,99,124,21)(16,125,136,22,100)(25,152,70,91,36)(26,92,145,37,71)(27,38,93,72,146)(28,65,39,147,94)(29,148,66,95,40)(30,96,149,33,67)(31,34,89,68,150)(32,69,35,151,90)(41,84,116,107,141)(42,108,85,142,117)(43,143,109,118,86)(44,119,144,87,110)(45,88,120,111,137)(46,112,81,138,113)(47,139,105,114,82)(48,115,140,83,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,83),(10,84),(11,85),(12,86),(13,87),(14,88),(15,81),(16,82),(17,108),(18,109),(19,110),(20,111),(21,112),(22,105),(23,106),(24,107),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60),(41,127),(42,128),(43,121),(44,122),(45,123),(46,124),(47,125),(48,126),(49,145),(50,146),(51,147),(52,148),(53,149),(54,150),(55,151),(56,152),(65,155),(66,156),(67,157),(68,158),(69,159),(70,160),(71,153),(72,154),(73,96),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(97,119),(98,120),(99,113),(100,114),(101,115),(102,116),(103,117),(104,118),(129,140),(130,141),(131,142),(132,143),(133,144),(134,137),(135,138),(136,139)], [(1,48),(2,29),(3,42),(4,31),(5,44),(6,25),(7,46),(8,27),(9,151),(10,88),(11,145),(12,82),(13,147),(14,84),(15,149),(16,86),(17,92),(18,105),(19,94),(20,107),(21,96),(22,109),(23,90),(24,111),(26,128),(28,122),(30,124),(32,126),(33,135),(34,58),(35,129),(36,60),(37,131),(38,62),(39,133),(40,64),(41,123),(43,125),(45,127),(47,121),(49,85),(50,150),(51,87),(52,152),(53,81),(54,146),(55,83),(56,148),(57,142),(59,144),(61,138),(63,140),(65,97),(66,160),(67,99),(68,154),(69,101),(70,156),(71,103),(72,158),(73,112),(74,93),(75,106),(76,95),(77,108),(78,89),(79,110),(80,91),(98,116),(100,118),(102,120),(104,114),(113,157),(115,159),(117,153),(119,155),(130,137),(132,139),(134,141),(136,143)], [(1,122),(2,123),(3,124),(4,125),(5,126),(6,127),(7,128),(8,121),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,49),(16,50),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44),(33,142),(34,143),(35,144),(36,137),(37,138),(38,139),(39,140),(40,141),(57,135),(58,136),(59,129),(60,130),(61,131),(62,132),(63,133),(64,134),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,113),(72,114),(81,145),(82,146),(83,147),(84,148),(85,149),(86,150),(87,151),(88,152),(89,109),(90,110),(91,111),(92,112),(93,105),(94,106),(95,107),(96,108),(97,159),(98,160),(99,153),(100,154),(101,155),(102,156),(103,157),(104,158)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,159,63,55,75),(2,56,160,76,64),(3,77,49,57,153),(4,58,78,154,50),(5,155,59,51,79),(6,52,156,80,60),(7,73,53,61,157),(8,62,74,158,54),(9,23,126,101,129),(10,102,24,130,127),(11,131,103,128,17),(12,121,132,18,104),(13,19,122,97,133),(14,98,20,134,123),(15,135,99,124,21),(16,125,136,22,100),(25,152,70,91,36),(26,92,145,37,71),(27,38,93,72,146),(28,65,39,147,94),(29,148,66,95,40),(30,96,149,33,67),(31,34,89,68,150),(32,69,35,151,90),(41,84,116,107,141),(42,108,85,142,117),(43,143,109,118,86),(44,119,144,87,110),(45,88,120,111,137),(46,112,81,138,113),(47,139,105,114,82),(48,115,140,83,106)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I4J4K4L 5 8A···8P10A···10O
order12···222224···4444458···810···10
size11···122225···510101010410···104···4

56 irreducible representations

dim11111112244444
type++++++-+-+
imageC1C2C2C2C4C4C8D4M4(2)F5C5⋊C8C2×F5C22.F5C22⋊F5
kernelC2×C23.2F5C23.2F5C22×C5⋊C8C23×Dic5C22×Dic5C23×C10C22×C10C2×Dic5C2×C10C24C23C23C22C22
# reps142162164414344

Matrix representation of C2×C23.2F5 in GL8(𝔽41)

10000000
01000000
00100000
00010000
000040000
000004000
000000400
000000040
,
10000000
040000000
004000000
003710000
00001000
00000100
00000010
00000001
,
400000000
040000000
004000000
000400000
00001000
00000100
00000010
00000001
,
400000000
040000000
00100000
00010000
000040000
000004000
000000400
000000040
,
10000000
01000000
00100000
00010000
000037000
000001000
000000160
000000018
,
039000000
160000000
009160000
0036320000
00000010
00000001
00000100
000040000

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,37,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,37,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,18],[0,16,0,0,0,0,0,0,39,0,0,0,0,0,0,0,0,0,9,36,0,0,0,0,0,0,16,32,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C2×C23.2F5 in GAP, Magma, Sage, TeX

C_2\times C_2^3._2F_5
% in TeX

G:=Group("C2xC2^3.2F5");
// GroupNames label

G:=SmallGroup(320,1135);
// by ID

G=gap.SmallGroup(320,1135);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^5=1,f^4=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽